Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
J Exp Biol ; 226(16)2023 08 15.
Article in English | MEDLINE | ID: mdl-37493055

ABSTRACT

Animals must acquire an ideal amount and balance of macronutrients to optimize their performance, health and fitness. The nutritional landscape provides an integrative framework for analysing how animal phenotypes are associated with multiple nutritional components. Here, we applied this powerful approach to examine how the intake of protein and carbohydrate affects nutrient acquisition and performance in the yellow mealworm (Tenebrio molitor) reared on one of 42 synthetic foods varying in protein and carbohydrate content. Tenebrio molitor larvae increased their food consumption rate in response to nutrient dilution, but this increase was not sufficient to fully compensate for the dilution. Diluting the food nutrient content with cellulose reduced the efficiency of post-ingestive nutrient utilization, further restricting macronutrient acquisition. Tenebrio molitor larvae utilized macronutrients most efficiently at a protein to carbohydrate (P:C) ratio of 1.77:1, but became less efficient at imbalanced P:C ratios. Survivorship was high at high protein intake and fell with decreasing protein intake. Pupal mass and growth rate exhibited a bell-shaped landscape, with the nutritional optima being located around protein-biased P:C ratios of 1.99:1 to 2.03:1 and 1.66:1 to 2.86:1, respectively. The nutritional optimum for development time was also identified at high P:C ratios (1.66:1  to 5.86:1). Unlike these performance traits, lipid content was maximized at carbohydrate-biased P:C ratios of 1:3.88 to 1:3.06. When given a food choice, T. molitor larvae self-composed a slightly carbohydrate-biased P:C ratio of 1:1.24, which lies between the P:C ratios that maximize performance and lipid content. Our findings indicate the occurrence of a nutrient-mediated trade-off between performance and energy storage in this insect.


Subject(s)
Tenebrio , Animals , Tenebrio/physiology , Food Preferences , Nutrients , Larva/physiology , Carbohydrates , Lipids
2.
Sci Rep ; 12(1): 19747, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396809

ABSTRACT

In the theory of ageing, it has been assumed that ageing is associated with a decline in somatic defences, including the immune system, as a consequence of a trade-off with reproduction. While overall immunity suffers from age-related deterioration (immune senescence), the different components of the immune response appear to age differently. It is also likely that investment among the many arms of the immune system and reproduction with age is finely adjusted to the organisms' reproductive strategy. We investigated this possibility in females of Tenebrio molitor, a species of long-lived insect with reproductive strategies similar to those of long-lived mammals. We specifically tested the effects of immunological challenges imposed early or late in adult life on immune pathway activation as well as fertility early and late in life. We found complex patterns of changes in immune defences with age and age-specific immune challenges with contrasted relationships with female reproduction. While cellular and enzymatic defences showed signs of ageing, they did not trade-off with reproduction. By contrast, the induced antibacterial immune response was found to be unaffected by age and to be highly connected to female fecundity. These findings suggest that these immunological pathways have different functions with regard to female ageing in this insect species.


Subject(s)
Coleoptera , Tenebrio , Animals , Female , Tenebrio/physiology , Reproduction/physiology , Fertility , Mammals
3.
J Exp Biol ; 225(9)2022 05 01.
Article in English | MEDLINE | ID: mdl-35363315

ABSTRACT

Coulometric respirometry is a highly sensitive method for measuring O2 consumption in small organisms but it is not in widespread use among physiologists. Here, we describe a coulometric microrespirometer based on a digital environmental sensor inside a sealed glass chamber and controlled by an Arduino™ microcontroller. As O2 is consumed, exhaled CO2 is removed, causing pressure to decrease in the chamber. The sensor detects the decreased pressure, and the controller activates electrolytic production of O2, returning pressure to the initial value. O2 consumption is calculated from electrolytic charge transfer. The effects of developmental stage, body mass and temperature on O2 consumption of Tenebrio molitor beetles were easily measured by the apparatus. This straightforward design is a significant innovation in that it provides continuous data regarding environmental conditions inside the experimental chamber, can be fabricated easily, and is adaptable to a wide range of uses.


Subject(s)
Coleoptera , Tenebrio , Animals , Oxygen , Oxygen Consumption , Temperature , Tenebrio/physiology
4.
Molecules ; 25(23)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33265946

ABSTRACT

Edible insects, due to their high nutritional value, are a good choice for traditional food supplementation. The effects of partial replacement of wheat flour and butter with mealworm flour (Tenebrio molitor) on the quality attributes of shortcake biscuits were studied. The approximate composition was analyzed, along with the physical properties and color. Moreover, the antioxidant properties, starch digestibility, and glycemic index were determined in vitro. The protein and ash contents in biscuits supplemented with mealworm flour increased, while the carbohydrates content decreased. The increasing insect flour substitution decreased the lightness (L*) and yellowness (b*) but increased the redness (a*), total color difference (ΔE), and browning index (BI). The spread factor for the sample with the highest proportion of mealworm flour was significantly higher than the other biscuits. Furthermore, higher additions of mealworm flour increased the antioxidant activity of the biscuits and contributed to an increase in the content of slowly digested starch, with a decrease in the content of rapidly digested starch. Therefore, the results of the research are promising and indicate the possibility of using edible insects to enrich food by increasing the nutritional and health-promoting values.


Subject(s)
Antioxidants/metabolism , Bread/analysis , Dietary Proteins/analysis , Flour/analysis , Glycemic Index , Tenebrio/physiology , Triticum/chemistry , Animals , Dietary Supplements , Food Handling , Nutritive Value , Snacks
5.
Sci Rep ; 10(1): 19492, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33173125

ABSTRACT

In mating interactions, it is common in nature for both sexes to choose simultaneously. However, this mutual mate choice and its consequences for progeny has received relatively little study; an approach where both male and female condition is manipulated is thus desirable. We compared both sexes' preferences in Tenebrio molitor beetles when individual condition varied (healthy vs infected with a fungus), and observed the direct benefits of those preferences. We predicted that: (a) females and males in good condition would prefer high quality mates; (b) preferences would be weaker when the choosing individual is in poor condition (and thus less selective given, for example, time and energetic constrains); and, (c) high quality mates would lay a larger number of total eggs and/or viable eggs than low quality mates. We found that both males and females in good condition were not more likely to choose mates that were also in good condition. However, poor-condition animals were more likely to prefer similar quality animals, while high-condition animals did not necessarily prefer mates of similar condition. Choosing sick males or females had a negative impact on egg number and viability. Our results suggest a non-adaptive mate choice in this species. Possibly, a deteriorated condition may drive individuals to invest more in attracting mates, because their chances of surviving the infection are very low. However, we do not discount the possibility that the fungus is manipulating individuals to increase its transmission during mating.


Subject(s)
Mating Preference, Animal/physiology , Sexual Behavior, Animal/physiology , Tenebrio/physiology , Animal Communication , Animals , Courtship , Female , Host-Pathogen Interactions , Male , Metarhizium/physiology , Reproduction/physiology , Tenebrio/microbiology
6.
BMC Vet Res ; 16(1): 439, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33176765

ABSTRACT

BACKGROUND: Mealworm beetle T. molitor (Coleoptera: Tenebrionidae) (Linnaeus, 1758) is one of the most important cosmopolitan primary storage pests, scavenging on a variety of post-harvest grains and affecting the quality and safety of food and feed. In addition to being an important factor in feed hygiene, the insect can also be an epidemiological factor of canthariasis. Livestock infestations with T. molitor are rarely reported. This article describes T. molitor-caused canthariasis in pigs in large scale closed-cycle farming. RESULTS: In the spring, we registered a significantly increased mortality among weaned pigs. In autopsy, live 3-6 mm long T. molitor larvae were found in their stomachs, especially in the non-glandular oesophageal region, on average 2-3 larvae per 10 cm2 of gastric mucosa. Corrective actions reduced the number of deaths back to basal levels. CONCLUSIONS: This is the first documented case of potentially lethal gastric canthariasis in weaned pigs, caused by invasion of T. molitor larvae. Although canthariasis caused by T. molitor has not been a significant problem in farm animals so far, our case indicates that the presence of mealworm beetles is a potential threat to animal welfare and health.


Subject(s)
Larva/physiology , Stomach Diseases/veterinary , Swine Diseases/parasitology , Tenebrio/physiology , Animal Feed/parasitology , Animals , Stomach Diseases/parasitology , Sus scrofa , Swine , Tenebrio/growth & development
7.
PLoS One ; 15(8): e0237259, 2020.
Article in English | MEDLINE | ID: mdl-32760156

ABSTRACT

Spent mushroom substrate is made from the waste remaining after the harvest of mushrooms. Here, we evaluated the potential of five spent edible fungi (Auricularia cornea, Lentinus edodes, Pleurotus eryngii, P. citrinopileatus and P. ostreatus) substrates as feed sources for Tenebrio molitor larvae. Young larvae did not survive on any substrate except the spent L. edodes substrate (36.7%). The survival rates in young larvae were similar among the different diets in which wheat bran or rice bran was replaced with 0, 20, 30, 40, 50, or 60% spent L. edodes substrate. The weights of the surviving larvae were decreased only when 70% of wheat bran and > 40% of rice bran was replaced with spent L. edodes substrate. In addition, the middle-aged larvae fed wheat bran only were significantly larger than those fed diets with 30~60% spent L. edodes substrate in dry feed, but the larvae of all treatments failed to pupate. Whereas the green feed was added in dry feed, there were no significant differences in pupal weight, pupation rate, pupal duration, adult emergence, or deformed adults among the three treatments in middle-aged larvae that were fed on diets containing 0, 30, or 40% spent L. edodes substrate. Collectively, these results suggest that spent L. edodes substrate has considerable potential to be used as a partial replacement (< 40%) of conventional feed for T. molitor, and spent mushroom substrate waste may be recycled as feed material for resource insects.


Subject(s)
Agaricales/metabolism , Animal Feed , Tenebrio/physiology , Animal Feed/microbiology , Animal Nutritional Physiological Phenomena , Animals , Larva/growth & development , Larva/physiology , Tenebrio/growth & development
8.
J Comp Physiol B ; 190(5): 521-534, 2020 09.
Article in English | MEDLINE | ID: mdl-32749520

ABSTRACT

Neuropeptides of short neuropeptides F family (sNPF) have been identified in various arthropods. They are pleiotropic neuromolecules which so far have been mainly associated with regulation of feeding and metabolism, as well as growth and development, locomotion, circadian rhythm or learning and memory. Here, we describe the effects of Tenebrionid sNPF peptide (SGRSPSLRLRFa) on various aspects of the male reproductive physiology in the Tenebrio molitor beetle. We identified in silico the putative sNPF receptor Tenmo-sNPFR. Based on RT-PCR technique, it was shown that the receptor might be present in the male reproductive tissues of this beetle. The analysis of receptor amino acid sequence showed that it is similar to other beetle sNPFRs, as well as other insect species, and belongs rhodopsin-like G-protein-coupled receptors (GPCRs). Injections of Trica-sNPF and its shorter form Trica-sNPF(4-11) caused differentiated effects in T. molitor male reproductive tissues. After 24 h post injections, the peptides decreased the concentration of the soluble protein fraction in testes of 4- and 8-day-old beetles as well as the dry mass of these organs but only in 8-day-old individuals. The same effects were shown with regard to accessory glands. Both peptides decrease the concentration of the soluble protein fraction but do not affect the dry mass of this organ. Furthermore, injections of Trica-sNPF at the 10-7 M concentration decrease the total sperm number in the reproductive system. Surprisingly, the same concentration of the shorter form, Trica-sNPF(4-11) increased the sperm number. It was also shown that both peptides in different manner influence contractions of ejaculatory duct. The data presented in this article give new evidence that sNPFs are involved in the regulation of reproductive events in beetles, which might be the part of a larger neuropeptide network combining feeding, growth and development with the physiology of reproduction.


Subject(s)
Genitalia, Male/physiology , Insect Proteins/physiology , Neuropeptides/physiology , Tenebrio/physiology , Amino Acid Sequence , Animals , Female , Fertility , Genitalia, Male/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Male , Neuropeptides/metabolism , Protein Conformation , Signal Transduction , Sperm Count , Tenebrio/chemistry , Tenebrio/genetics , Tenebrio/metabolism , Transcriptome
9.
J Insect Sci ; 20(4)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32809021

ABSTRACT

The aim of this study was to evaluate five agro-industrial byproducts (apricots, brewer's spent grains, brewer's spent yeast, feed mill byproducts including broken cereal grains, and hatchery waste including eggshell debris, fluff, infertile eggs, dead embryos, and egg fluids) or mixtures thereof as food diets of Ephestia kuehniella (Zeller), Tenebrio molitor (L.), and Hermetia illucens (L.). Eleven out of 26 tested combinations allowed the first instar larvae to reach the adult stage. Results showed that bioconversion parameters and biomass composition can vary depending on the diet composition, especially in the case of E. kuehniella and H. illucens, whose nutritional requirements seem more complex than those of T. molitor. Tenebrio molitor was able to develop in almost all byproducts. However, only when T. molitor was fed with suitable mixtures of byproducts the development parameters were similar to those obtained with the standard diet. The best results in terms of bioconversion parameters were obtained by feeding H. illucens with a diet including dried brewer's spent grain, feed mill byproducts and brewer's spent yeast. The larvae of these three species can be considered interesting from a nutritional point of view, because of their high protein and fat content. However, the fatty acids profile of H. illucens larvae, with high proportions of saturated fatty acids, seems less healthy for human consumption compared with those of E. kuehniella and T. molitor.


Subject(s)
Animal Feed/analysis , Diptera/physiology , Moths/physiology , Tenebrio/physiology , Animals , Biomass , Diet , Diptera/drug effects , Diptera/growth & development , Entomology/methods , Larva/drug effects , Larva/growth & development , Larva/physiology , Moths/drug effects , Moths/growth & development , Tenebrio/drug effects , Tenebrio/growth & development
10.
Insect Biochem Mol Biol ; 117: 103291, 2020 02.
Article in English | MEDLINE | ID: mdl-31812474

ABSTRACT

In many arthropod species including insects, the cuticle tanning pathway for both pigmentation and sclerotization begins with tyrosine and is responsible for production of both melanin- and quinoid-type pigments, some of which are major pigments for body coloration. In this study we identified and cloned cDNAs of the yellow mealworm, Tenebrio molitor, encoding seven key enzymes involved in this pathway including tyrosine hydroxylase (TmTH), DOPA decarboxylase (TmDDC), laccase 2 (TmLac2), Yellow-y (TmY-y), arylalkylamine N-acetyltransferase (TmAANAT1), aspartate 1-decarboxylase (TmADC) and N-ß-alanyldopamine synthase (Tmebony). Expression profiles of these genes during development were analyzed by real-time PCR, revealing development-specific patterns of expression. Loss of function mediated by RNAi of either 1) TmTH or TmLac2, 2) TmDDC or TmY-y, and 3) TmAANAT1, TmADC or Tmebony resulted in pale/white, light yellow/brown and dark/black adult body coloration, respectively. In addition, there are three distinct layer/regional pigmentation differences in rigid types of adult cuticle, a brownish outer exocuticle (EX), a dark pigmented middle mesocuticle (ME) and a transparent inner endocuticle (EN). Decreases in pigmentation of the EX and/or ME layers were observed after RNAi of TmDDC or TmY-y. In TmADC- or Tmebony-deficient adults, a darker pigmented EX layer was observed. In TmAANAT1-deficient adults, trabeculae formed between the dorsal and ventral elytral cuticles as well as the transparent EN layer became highly pigmented. These results demonstrate that knocking down the level of gene expression of specific enzymes of this tyrosine metabolic pathway leads to abnormal pigmentation in individual layers and substructure of the rigid adult exoskeleton of T. molitor.


Subject(s)
Insect Proteins/genetics , Pigmentation/genetics , Tenebrio/physiology , Animal Shells/physiology , Animals , Insect Proteins/metabolism , Tenebrio/genetics , Wings, Animal/physiology
11.
Toxins (Basel) ; 11(9)2019 08 27.
Article in English | MEDLINE | ID: mdl-31461888

ABSTRACT

Melittin (MEL) is a basic polypeptide originally purified from honeybee venom. MEL exhibits a broad spectrum of biological activity. However, almost all studies on MEL activity have been carried out on vertebrate models or cell lines. Recently, due to cheap breeding and the possibility of extrapolating the results of the research to vertebrates, insects have been used for various bioassays and comparative physiological studies. For these reasons, it is valuable to examine the influence of melittin on insect physiology. Here, for the first time, we report the immunotropic and cardiotropic effects of melittin on the beetle Tenebrio molitor as a model insect. After melittin injection at 10-7 M and 10-3 M, the number of apoptotic cells in the haemolymph increased in a dose-dependent manner. The pro-apoptotic action of MEL was likely compensated by increasing the total number of haemocytes. However, the injection of MEL did not cause any changes in the percent of phagocytic haemocytes or in the phenoloxidase activity. In an in vitro bioassay with a semi-isolated Tenebrio heart, MEL induced a slight chronotropic-positive effect only at a higher concentration (10-4 M). Preliminary results indicated that melittin exerts pleiotropic effects on the functioning of the immune system and the endogenous contractile activity of the heart. Some of the induced responses in T. molitor resemble the reactions observed in vertebrate models. Therefore, the T. molitor beetle may be a convenient invertebrate model organism for comparative physiological studies and for the identification of new properties and mechanisms of action of melittin and related compounds.


Subject(s)
Bee Venoms/chemistry , Heart/drug effects , Immune System/drug effects , Melitten/pharmacology , Myocardial Contraction/drug effects , Tenebrio/drug effects , Animals , Apoptosis/drug effects , Dose-Response Relationship, Drug , Heart/physiology , Hemocytes/drug effects , Male , Melitten/isolation & purification , Models, Animal , Phagocytosis/drug effects , Phagocytosis/immunology , Tenebrio/immunology , Tenebrio/physiology
12.
Sci Rep ; 9(1): 10330, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31316090

ABSTRACT

This article shows that nanodiamonds can transmigrate through the insect cuticle easily, and the doses used were not hemocytotoxic and did not cause inhibition of cellular and humoral immune responses in larvae, pupae and adults of Tenebrio molitor. The examination of the nanodiamond biodistribution in insect cells demonstrated the presence of nanodiamond aggregates mainly in hemocytes, where nanoparticles were efficiently collected as a result of phagocytosis. To a lesser extent, nanodiamond aggregates were also detected in fat body cells, while they were not observed in Malpighian tubule cells. We functionalized nanodiamonds with Neb-colloostatin, an insect hemocytotoxic and gonadoinhibitory peptide, and we showed that this conjugate passed through the insect cuticle into the hemolymph, where the peptide complexed with the nanodiamonds induced apoptosis of hemocytes, significantly decreased the number of hemocytes circulating in the hemolymph and inhibited cellular and humoral immune responses in all developmental stages of insects. The results indicate that it is possible to introduce a peptide that interferes with the immunity and reproduction of insects to the interior of the insect body by means of a nanocarrier. In the future, the results of these studies may contribute to the development of new pest control agents.


Subject(s)
Insect Control/methods , Insect Hormones/administration & dosage , Nanodiamonds/administration & dosage , Tenebrio/drug effects , Tenebrio/immunology , Animal Shells/drug effects , Animal Shells/metabolism , Animals , Apoptosis/drug effects , Fat Body/drug effects , Fat Body/metabolism , Hemocytes/cytology , Hemocytes/drug effects , Hemocytes/metabolism , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Insect Hormones/pharmacokinetics , Nanotechnology , Phagocytosis , Tenebrio/physiology , Tissue Distribution
13.
Environ Pollut ; 252(Pt B): 1142-1153, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31252112

ABSTRACT

Proper management of waste crop residues has been an environmental concern for years. Yellow mealworms (larvae of Tenebrio molitor Linnaeus, 1758) are major insect protein source. In comparison with normal feed wheat bran (WB), we tested five common lignocellulose-rich crop residues as feedstock to rear mealworms, including wheat straw (WS), rice straw (RS), rice bran (RB), rice husk (RH), and corn straw (CS). We then used egested frass for the production of biochar in order to achieve clean production. Except for WS and RH, the crop residues supported mealworms' life activity and growth with consumption of the residues by 90% or higher and degraded lignin, hemicellulose and cellulose over 32 day period. The sequence of degradability of the feedstocks is RS > RB > CS > WS > RH. Egested frass was converted to biochar which was tested for metal removal including Pb(II), Cd(II), Cu(II), Zn(II), and Cr(VI). Biochar via pyrolysis at 600 °C from RS fed frass (FRSBC) showed the best adsorption performance. The adsorption isotherm fits the Langmuir model, and kinetic analysis fits the Pseudo-Second Order Reaction. The heavy metal adsorption process was well-described using the Intra-Particle Diffusion model. Complexation, cation exchange, precipitation, reduction, deposition, and chelation dominated the adsorption of the metals onto FRSBC. The results indicated that crop residues (WS, RS, RB, and CS) can be utilized as supplementary feedstock along with biochar generated from egested frass to rear mealworms and achieve clean production while generating high-quality bioadsorbent for environment remediation and soil conditioning.


Subject(s)
Charcoal/chemistry , Environmental Restoration and Remediation/methods , Metals, Heavy/chemistry , Tenebrio/physiology , Adsorption , Animals , Biomass , Diet , Kinetics , Lignin , Metals, Heavy/analysis , Oryza/metabolism , Soil/chemistry , Soil Pollutants/analysis , Triticum/metabolism , Zea mays/metabolism
14.
Toxins (Basel) ; 11(5)2019 05 22.
Article in English | MEDLINE | ID: mdl-31121818

ABSTRACT

The usage of insects as model organisms is becoming more and more common in toxicological, pharmacological, genetic and biomedical research. Insects, such as fruit flies (Drosophila melanogaster), locusts (Locusta migratoria), stick insects (Baculum extradentatum) or beetles (Tenebrio molitor) are used to assess the effect of different active compounds, as well as to analyse the background and course of certain diseases, including heart disorders. The goal of this study was to assess the influence of secondary metabolites extracted from Solanaceae and Brassicaceae plants: Potato (Solanum tuberosum), tomato (Solanum lycopersicum), black nightshade (Solanum nigrum) and horseradish (Armoracia rusticana), on T. molitor beetle heart contractility in comparison with pure alkaloids. During the in vivo bioassays, the plants glycoalkaloid extracts and pure substances were injected at the concentration 10-5 M into T. molitor pupa and evoked changes in heart activity. Pure glycoalkaloids caused mainly positive chronotropic effects, dependant on heart activity phase during a 24-h period of recording. Moreover, the substances affected the duration of the heart activity phases. Similarly, to the pure glycoalkaloids, the tested extracts also mainly accelerated the heart rhythm, however S. tuberosum and S. lycopersicum extracts slightly decreased the heart contractions frequency in the last 6 h of the recording. Cardioacceleratory activity of only S. lycopersicum extract was higher than single alkaloids whereas S. tubersoum and S. nigrum extracts were less active when compared to pure alkaloids. The most cardioactive substance was chaconine which strongly stimulated heart action during the whole recording after injection. A. rusticana extract which is composed mainly of glucosinolates did not significantly affect the heart contractions. Obtained results showed that glycoalkaloids were much more active than glucosinolates. However, the extracts depending on the plant species might be more or less active than pure substances.


Subject(s)
Alkaloids/pharmacology , Armoracia/metabolism , Plant Extracts/pharmacology , Solanum/metabolism , Tenebrio/drug effects , Alkaloids/metabolism , Animals , Fruit/chemistry , Fruit/metabolism , Myocardial Contraction/drug effects , Plant Leaves/chemistry , Plant Leaves/metabolism , Pupa/drug effects , Pupa/physiology , Secondary Metabolism , Tenebrio/physiology
15.
J Insect Sci ; 19(2)2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30822778

ABSTRACT

Efforts to improve rearing conditions of Tenebrio molitor L. (Coleoptera: Tenebrionidae) for insect biomass production included selecting for larger size pupae. The effects of an 8-yr continuous selection of T. molitor pupae for larger size were studied. Data consisting of daily counts and weights of pupae were analyzed using regression to determine the effects of selection over time. A preliminary evaluation of food conversion, growth, fecundity, and larval survival was done to compare ancestral versus selected strains. A significant positive correlation was identified between pupal size and time indicating a significant increase in pupal size over time in the selected T. molitor strain. A preliminary comparison of ancestral and selected strains showed significantly larger pupal size, growth rate, fecundity, and efficiency of conversion of ingested food in the selected strain. However, the selected strain also showed significantly lower larval survival than the ancestral strain. The low larval survival impacted the overall productivity of the selected strain resulting in no significant differences in biomass production when compared with the ancestral strain. The potential of using selection to improve biomass productivity in T. molitor is discussed.


Subject(s)
Life History Traits , Selection, Genetic , Tenebrio/physiology , Animals , Body Weight , Energy Metabolism , Fertility , Larva/genetics , Larva/growth & development , Larva/physiology , Longevity , Pupa/genetics , Pupa/growth & development , Pupa/physiology , Tenebrio/genetics , Tenebrio/growth & development
16.
Toxins (Basel) ; 10(12)2018 12 01.
Article in English | MEDLINE | ID: mdl-30513736

ABSTRACT

BACKGROUND: Solanaceae plants produce glycoalkaloids (GAs) that affect various physiological processes of herbivorous insects and they are being tested as potential alternatives for synthetic pesticides. They cause lethal and sublethal effects. Nevertheless, their mode of action remains unclear. Therefore, we examined the effects of Solanum nigrum fruit extracts and pure glycoalkaloids on a model beetle, Tenebrio molitor. METHODS: Plant extracts or pure alkaloids were added to the food of the larvae for three days. The lipid, glycogen, and protein content in the fat body and the midgut were determined, and the contractility of the heart, hindgut, and oviduct muscles was tested using the video-microscopy technique. Finally, the ultrastructure of the fat body and the midgut was observed using electron microscopy. RESULTS: No lethal effects were noted. Sublethal changes were observed in the content of biomolecules, malformations of organelles, chromatin condensation, and heart and oviduct contractility. The observed effects differed between the tested glycoalkaloids and the extract. CONCLUSIONS: Both the extract and pure GAs have a wide range of effects that may result in impaired development, food intake, and reproduction. Some early effects may be used as bioindicators of stress. The effects of the extract and pure alkaloids suggest that the substances produced by the plant may act additively or synergistically.


Subject(s)
Alkaloids/toxicity , Plant Extracts/toxicity , Solanum nigrum , Tenebrio/drug effects , Animals , Body Weight/drug effects , Fat Body/drug effects , Fat Body/pathology , Female , Fruit , Glycogen/metabolism , Heart/drug effects , Heart/physiology , Insect Proteins/metabolism , Intestines/drug effects , Intestines/pathology , Intestines/physiology , Larva/drug effects , Larva/physiology , Lipid Metabolism/drug effects , Muscle Contraction/drug effects , Oviducts/drug effects , Oviducts/physiology , Tenebrio/physiology
17.
Sci Rep ; 8(1): 15359, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30337550

ABSTRACT

Antimicrobial peptides (AMP) are highly conserved immune effectors across the tree of life and are employed as combinations. In the beetle Tenebrio molitor, a defensin and a coleoptericin are highly expressed in vivo after inoculation with S. aureus. The defensin displays strong in vitro activity but no survival benefit in vivo. The coleoptericin provides a survival benefit in vivo, but no activity in vitro. This suggests a potentiating effect in vivo, and here we wanted to investigate the effects of this combination on resistance evolution using a bottom-approach in vitro starting with a combination of two abundant AMPs only. We experimentally evolved S. aureus in the presence of the defensin and a combination of the defensin and coleoptericin. Genome re-sequencing showed that resistance was associated with mutations in either the pmt or nsa operons. Strains with these mutations show longer lag phases, slower Vmax, and nsa mutants reach lower final population sizes. Mutations in the rpo operon showed a further increase in the lag phase in nsa mutants but not in pmt mutants. In contrast, final MICs (minimum inhibitory concentrations) do not differ according to mutation. All resistant lines display AMP but not antibiotic cross-resistance. Costly resistance against AMPs readily evolves for an individual AMP as well as a naturally occurring combination in vitro and provides broad protection against AMPs. Such non-specific resistance could result in strong selection on host immune systems that rely on cocktails of AMPs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacterial Proteins/genetics , Defensins/pharmacology , Staphylococcal Infections/genetics , Staphylococcus aureus/genetics , Acclimatization , Animals , Drug Resistance, Multiple, Bacterial , Genomics/methods , Insect Proteins/pharmacology , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Tenebrio/physiology
18.
PLoS One ; 13(9): e0204602, 2018.
Article in English | MEDLINE | ID: mdl-30261034

ABSTRACT

BACKGROUND: Plant pathogenic fungi of the genus Fusarium infect a wide array of crops and produce numerous health-threatening mycotoxins. Recently, we found that larvae of the common pest of stored products Tenebrio molitor preferably fed on grains colonized with Fusarium proliferatum. We draw the hypothesis that the increased attractiveness of infected grains for mealworms facilitates dispersal of the fungus. In this work we examined the dissemination of F. proliferatum and further Fusarium spp. by adults of T. molitor. RESULTS: Mealworm beetle Tenebrio molitor transmitted Fusarium species F. avenaceum, F. culmorum, F. poae, and F. proliferatum to wheat grains with varying efficiency. F. proliferatum was disseminated most efficiently: 20 days after feeding on Fusarium cultures, the beetles still transmitted F. proliferatum to most grains exposed to feeding. The transmission of F. culmorum gradually declined over time and the transmission of the other Fusarium spp. ceased completely 20 d after beetles feeding of fungal cultures. Propagules of F. proliferatum and F. culmorum were traceable in beetles' feces for 20 days while no colonies of F. poae and F. avenaceum were detectable after 5 days. Because F. proliferatum was transmitted by mealworms most efficiently, this species was further investigated. Mealworm beetles T. molitor preferred feeding on grains colonized with F. proliferatum as compared to uninfected grains. Male beetles infected with F. proliferatum transmitted the fungus by copulation. CONCLUSIONS: Efficient dissemination of F. proliferatum by mealworm beetle together with the feeding preference of the beetle for grains colonized with F. proliferatum show that the chemical phenotype of the fungus responsible for the enhanced attractiveness of infected grains is subjected to positive selection. This indicates that adaptation of F. proliferatum to transmission by insects involved an alteration of insects' feeding preferences.


Subject(s)
Fusarium/pathogenicity , Tenebrio/microbiology , Animals , Copulation , DNA, Fungal/analysis , DNA, Fungal/genetics , Edible Grain/microbiology , Female , Food Microbiology , Food Preferences , Fusarium/genetics , Fusarium/growth & development , Insect Vectors/microbiology , Insect Vectors/physiology , Male , Microscopy, Electron, Scanning , Mycotoxins/analysis , Plant Diseases/microbiology , Tenebrio/physiology
19.
J Comp Physiol B ; 188(6): 929-937, 2018 11.
Article in English | MEDLINE | ID: mdl-30218147

ABSTRACT

Insect and vertebrate hearts share the ability to generate spontaneously their rhythmic electrical activity, which triggers the fluid-propelling mechanical activity. Although insects have been used as models in studies on the impact of genetic alterations on cardiac function, there is surprisingly little information on the generation of the inotropic activity in their hearts. The main goal of this study was to investigate the sources of Ca2+ for contraction in Tenebrio molitor hearts perfused in situ, in which inotropic activity was assessed by the systolic variation of the cardiac luminal diameter. Increasing the pacing rate from 1.0 to 2.5 Hz depressed contraction amplitude and accelerated relaxation. To avoid inotropic interference of variations in spontaneous rate, which have been shown to occur in insect heart during maneuvers that affect Ca2+ cycling, experiments were performed under electrical pacing at near-physiological rates. Raising the extracellular Ca2+ concentration from 0.5 to 8 mM increased contraction amplitude in a manner sensitive to L-type Ca2+ channel blockade by D600. Inotropic depression was observed after treatment with caffeine or thapsigargin, which impair Ca2+ accumulation by the sarcoplasmic reticulum (SR). D600, but not inhibition of the sarcolemmal Na+/Ca2+ exchanger by KB-R7943, further depressed inotropic activity in thapsigargin-treated hearts. From these results, it is possible to conclude that in T. molitor heart, as in vertebrates: (a) inotropic and lusitropic activities are modulated by the heart rate; and (b) Ca2+ availability for contraction depends on both Ca2+ influx via L-type channels and Ca2+ release from the SR.


Subject(s)
Calcium/physiology , Heart/physiology , Myocardial Contraction/physiology , Sarcoplasmic Reticulum/physiology , Tenebrio/physiology , Animals , Calcium Channels, L-Type/physiology , Female , In Vitro Techniques , Insect Proteins/physiology , Male
20.
Arch Insect Biochem Physiol ; 99(1): e21474, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29851138

ABSTRACT

The physiological processes that occur during the aging of insects are poorly understood. The aim of this study was to describe the changes in contractile activity and hemodynamic parameters of the heart that take place as the coleopteran beetle, Tenebrio molitor, ages. The frequency of heart contractions in beetles that had just undergone metamorphosis (median 24.7 beats/min) was significantly lower than the frequency of heart contractions in older beetles. In 56% of beetles that were < 1 week of age, a pattern of contractile activity with alternating periods of higher and lower contraction frequency was detected, suggesting that some posteclosion developmental processes occur during the first week of adulthood. All beetles that were 1 week of age showed a regular rhythm of heart contractions (median 72 beats/min). In older beetles, abnormalities such as heart arrhythmias or heart arrest were observed. The incidence of arrhythmia as well as the arrhythmicity index was highest in beetles that were 8-18 weeks old. The calculated stroke volume (SV) was also found to increase from eclosion to 12 weeks of age, and then decreased as adults aged further. Interestingly, cardiac output increased gradually, but the ejection fraction did not change significantly with age.


Subject(s)
Aging , Hemodynamics , Myocardial Contraction , Tenebrio/physiology , Animals , Female , Heart/physiology , Male , Metamorphosis, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...